河南安润金属表面处理有限公司

欢迎浏览河南安润金属表面处理有限公司网站!
公司新闻

公司一家采用新技术工艺的技术服务企业,专门承接金属零部件的离子氮化工艺处理服务。

您当前所在的位置:首页 > 新闻资讯 > 公司新闻

离子氮化技术的特点 日期:2023-01-16 点击:851次

  离子渗氮重要的特点之一是可以通过控制渗氮气氛的组成、气压、电参数、温度等因素来控制表面化合物层(俗称白亮层)的结构和扩散层组织,从而满足零件的服役条件和对性能的要求。

  离子渗氮化合物层常遇到的氮化物相有两种:γ,-Fe4N相和ε-Fe2-3N相,离子氮碳共渗(俗称软氮化)还可能出现Fe3C相。γ,单相具有*小的脆性,但耐磨性较差,ε单相脆性也较小,并有较好的耐磨性和抗磨合性能。合金结构钢离子渗氮时一般均得到双相(γ,+ε或ε+γ,)组织,脆性较单相大些,耐磨性较好;离子氮碳共渗得到ε+Fe3C(少量)组织,脆性并不增加,而有**的耐磨性。

  一、影响化合物层中ε和γ,相含量的因素

  影响离子渗氮化合物层结构的因素很多,有渗氮气氛的影响,钢材成分和组织方面的影响,还有渗氮温度、时间、气压等工艺方面的影响因素。

  (一)渗氮气氛的影响

  离子渗氮气氛中氮和碳的含量是影响化合物层相结构的重要因素。

  1)气氛含氮量对化合物层相结构的影响

  随着气氛含氮量增加,化合物层中ε相含量增多,白亮层也随之增厚。如40Cr钢用氨气渗氮时,ε相含量相当多,改用分解氨后则大大减少。

  2)气氛中添加含碳气体将γ,形成,而得到以ε相为主或ε单相结构的化合物层。

  如气氛中加入丙烷(C3H8)后,化合物层中ε含量迅速增多,基本由ε单相组成。含碳量再增多则化合物层中开始出现Fe3C,含碳量继续增多,则Fe3C增多,ε减少直到完全消失

  离子渗氮需要严格控制气氛中含碳量,使之能得到ε单相或ε+少量Fe3C的双相组织。这样的组织其硬度和耐磨性均比单纯离子氮化有较大提高。如45钢在含80%N2的氮氢气氛中570℃渗氮3小时,表面硬度只有575-603HV0.5,加入丙烷气后,当含碳量达到临界值(不出现Fe3C的**含碳量)时,ε相化合物层的硬度达730-781 HV0.5。

  (二)钢材成分和组织的影响

  随着钢中含碳量及合金元素增加,氮化层中ε相也随之增多。

  基体组织硬度较高者,渗氮层表面硬度也较高,而且化合物层较厚,其中ε相也较多。

  一般来说,调质组织渗氮化合物层中的ε相含量比正火组织少。

  (三)渗氮保温时间的影响

  40Cr钢化合物层厚度在渗氮初期增长较快,保温2-4小时后变化不大。而38CrMoAl钢化合物层厚度则随时间延长而增厚,保温24小时后,这种趋势仍然保持着。

  一般合金结构钢在用分解氨渗氮时,随保温时间延长,ε相减少,γ,相增多,长时间保温后,化合物层基本由γ,相组成。

  (四)渗氮温度的影响

  40Cr钢渗氮时,从500℃升到达560℃,化合物层中ε和γ,均增加,当升到580-600℃时,ε相突然减少,γ,相数量猛增,当温度升到620℃,γ,相数量急剧减少,升到650℃以上则化合物层分解。

  (五)气压的影响

  离子渗氮化合物层的厚度在某一*佳气压下出现**值,氮化物ε相的含量和气压也有类似的关系。如40Cr钢在530℃渗氮,气压为400Pa时,化合物层中ε相含量*多,而在570℃渗氮,这一气压值为530Pa。

  二、获得各种化合物层组织的工艺方法

  (一)γ,单相化合物层的获得

  γ,相在室温时它的含氮量为5.7-6.1%,相区狭窄,所以γ,单相化合物层比较薄,通常认为可达8um。碳在γ,相中的溶解度不大,室温时**溶碳能力为0.2%。由此可见,获得γ,相的条件是渗氮表面贫碳和氮含量偏低。所以降低气氛氮势,强化脱碳过程将有利于γ,的获得。

  用以下方法之一,可以获得γ,单相化合物层:

  (1)降低气氛的含碳量

  用含氮25%的氮氢混合气或者热分解氨不容易得到γ,单相化合物层,不论是38CrMoAl还是40Cr钢,甚至碳钢都程度不同地含有ε相,若进一步降低气氛含氮量到10%时,上述几种钢材都能得到γ,单相化合物层。

  (2)降低炉气压力

  低气压、高电压,强化溅射和脱碳作用,有利于化合物层中γ,的形成。40Cr钢和38CrMoAl钢在含氮25%的氮氢气氛中530℃渗氮,当气压为160Pa时能得到薄薄的γ,单相化合物层,可以在保温前1-3小时内用低气压,而在以后的保温过程中用一般气压渗氮。这样γ,单相层可由1-2um增加到4-5um。提高渗氮温度还能使它进一步增厚。

  (3)预脱碳法

  用热分解氨离子渗氮时,只有工业纯铁容易得到γ,单相化合物层。因此可以设想,如果使材料表面先形成一层脱碳层,随后再渗氮,就可以得到γ,单相化合物层。如40Cr和38CrMoAl试样先用氢气起辉升温,达到530℃后保温1小时,然后改用25%N2-H2或热分解氨继续渗氮,都得到了γ,单相化合物层。

  (4)延长离子渗氮时间

  碳钢、40Cr等材料用分解氨离子渗氮时,随着渗氮时间延长,化合物层中ε相逐渐减少。

  (二)ε单相和ε加少量Fe3C化合物层的获得

  离子氮碳共渗气氛中碳量达到临界值时,就能得到ε单相化合物层。如果超过临界含碳量,则得到ε+Fe3C化合物层。图2给出了45钢在570-590℃离子氮碳共渗3小时,气氛的组成与化合物层组织之间的关系。可见,ε相单相区非常狭窄,在图中仅仅是一条线,即是临界含碳量曲线。这就意味着获得ε单相的工艺性较差,气氛配比控制得很严格才能做到。否则经常得到的是ε+Fe3C双相化合物层。而形成ε+Fe3C化合物层的气相配比范围却比较宽,生产上容易控制。Fe3C的存在能提高渗氮层的耐磨性,而且少量Fe3C和ε双相化合物层的脆性并不比ε单相差。因此,离子氮碳共渗获得ε+少量Fe3C化合物层是有利而无害的。图2中阴影所示部分为离子氮碳共渗气氛的配比范围。在阴影内,于570-590℃渗氮3小时,正火45钢表面可以得到15-30um的ε或ε+Fe3C构成的化合物层。气氛含氮量低,含碳量高,化合物层较薄,反之则厚。如果不需要过厚的化合物层,可以把共渗时间缩短至1-2小时。当然,临界含碳量也要作相应调整。

  离子氮碳共渗的温度以570-590℃,时间以2-4小时为宜,气压一般用270-530Pa。

  氮气加丙烷共渗也同样能得到ε相或ε+Fe3C化合物层。渗层表面呈银灰色,虽然不用氢气,但丙烷中含有的氢足以防止表面氧化。这种工艺不需要氢气,便于在生产中应用。

  (三)用酒精和丙酮进行离子软氮化

  目前国内在生产上常用酒精和丙酮进行离子软氮化,也能得到增加化合物层中ε相含量的效果。一般得到ε-Fe2-3(CN)+γ,-Fe4N双相化合物层,但是ε相的含量较普通离子渗氮多,因而表面硬度和耐磨性都有进一步提高。

  操作时先通氨气升温,到温后在按一定比例送入含碳气氛。酒精和丙酮蒸气是采用负压抽入的办法通入炉内。在氨/乙醇和氨/丙酮的流量比为9/1-7/3范围内,表面硬度以8/2为**;化合物层的厚度在流量比9/1-8/2范围内变化不大,再增加含碳气氛,化合物层显著减薄;不同流量比对扩散层深度的影响不大。比较氨/乙醇和氨/丙酮这两类气氛,后者能获得更高的表面硬度,较厚的化合物层和较深的扩散层。其混合比以氨/丙酮=9/1-8/2为好。

  三、无化合物层渗氮表面的获得

  渗氮时化合物层,形成的纯扩散层组织具有很高的强韧性,称之为高韧性渗氮层。

  产生纯扩散层有两种办法:

  (一)两段处理法:

  先正常离子渗氮,得到γ,或γ,+ε化合物层的扩散层,然后采用氢、氩等气体辉光放电,靠离子轰击,使已形成的化合物层分解。

  (二)控制含氮量:

  在整个过程中保持等离子区的低氮势,以避免在表面产生γ,氮化物的晶核。但此时氮势应恰好仅低于临界值,以使扩散层能被氮所饱和,并且在硬度和深度上不致比通常的扩散层加化合物层降低太多。


Copyright © 2023 河南安润金属表面处理有限公司 豫ICP备2023008577号-1 
  • 咨询热线

  • 短信咨询

  • 查看地图

  • 二维码